Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sarah A. Barnett, ${ }^{\text {a* }}$ Andrea Johnston, ${ }^{\text {b }}$ Alastair J. Florence ${ }^{\text {b }}$ and Alan R. Kennedy ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Theoretical and Computational Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England,
${ }^{\mathbf{b}}$ Department of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and ${ }^{c}$ Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland

Correspondence e-mail:
sarah.barnett@ucl.ac.uk

Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.080$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3,4-Dichloro-1-nitrobenzene-aniline (2/1)

The solvate structure of 3,4-dichloro-1-nitrobenzene with aniline, $2 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$, is reported. Ribbons of 3,4dichloronitrobenzene, formed by $\mathrm{Cl} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{O} \cdots \mathrm{Cl}$ interactions, are linked together via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with aniline into an undulating two-dimensional sheet.

Comment

The title compound, (I), was produced during an automated parallel crystallization polymorph screen on 3,4-dichloronitrobenzene ($3,4-\mathrm{DCNB}$). The sample was identified as a novel form using multi-sample X-ray powder diffraction analysis of all recrystallized samples (Florence et al., 2003). Subsequent manual recrystallization from a saturated aniline solution by slow evaporation at 298 K yielded samples suitable for single-crystal X-ray analysis. The title solvate, (I), crystallizes in the space group $P 2_{1} / n$ with two molecules of $3,4-$ DCNB and one molecule of aniline in the asymmetric unit (Fig. 1).

The crystal structure of (I) is characterized by ribbons of $3,4-\mathrm{DCNB}$, which are linked by aniline molecules to form a

The asymmetric unit of (I), showing the numbering scheme used. Displacement ellipsoids are drawn at the 50% probability level.

Received 22 June 2005 Accepted 24 June 2005 Online 30 June 2005
\qquad

Figure 2
The two-dimensional network formed by (I), showing the intermolecular interactions involved as dashed lines (3,4-DCNB molecule 1: green; 3,4DCNB molecule 2: blue; aniline: red).

Figure 3
Packing diagram viewed perpendicular to the sheets, illustrating the out-of-plane aniline molecules and the stacking arrangement of the sheets. Intermolecular interactions are shown as dashed lines.
continuous sheet (Fig. 2). Molecules of type 1 (C1-C6) form a zigzag chain via $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions $\left[\mathrm{Cl} 1 \cdots \mathrm{Cl} 2^{\mathrm{i}}=3.399\right.$ (1) \AA and $\mathrm{C} 3-\mathrm{Cl} 1 \cdots \mathrm{Cl} 2^{\mathrm{i}}=149.4(1)^{\circ}$; symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}+$ $\left.y, \frac{3}{2}-z\right]$. These molecules are then involved in a second contact with molecules of type $2(\mathrm{C} 7-\mathrm{C} 12)$ via $\mathrm{N}-\mathrm{O} \cdots \mathrm{Cl}$ interactions $\left[\mathrm{O} 2 \cdots \mathrm{Cl} 4^{\mathrm{ii}}=3.056\right.$ (2) \AA and $\mathrm{N} 1-\mathrm{O} 2 \cdots \mathrm{Cl} 4^{\mathrm{ii}}=$ $140.1(1)^{\circ}$; symmetry code: (ii) $1-x, 1-y, 1-z$], thus forming $3,4-\mathrm{DCNB}$ ribbons running parallel to the b axis. The aniline solvent molecules, which lie in a perpendicular plane, link these ribbons into an undulating sheet through two $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions $\left[\mathrm{N} 3 \cdots \mathrm{O} 1^{\mathrm{iii}}=2.52(2) \AA\right.$ and $\mathrm{N} 3-$ $\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O}{ }^{\mathrm{iii}}=157(2)^{\circ}$, and $\mathrm{N} 3 \cdots \mathrm{O} 3^{\mathrm{i}}=2.64(2) \AA$ and $\mathrm{N} 3-$ $\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{i}}=147(2)^{\circ}$; symmetry code: (iii) $\left.2-x, 1-y, 1-z\right]$. These sheets form an interdigitated $A B A B$ stack parallel to the a axis (Fig. 3).

Experimental

A single-crystal sample of the title compound was recrystallized from aniline solution by slow evaporation at ca 293 K .

Crystal data

$2 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$
$M_{r}=477.11$
Monoclinic, $P 2_{1} / n$
$a=6.9774(2) \AA$
$b=10.1668(3) \AA$
$c=27.6762(7) \AA$
$\beta=96.495(2)^{\circ}$
$V=1950.69(9) \AA^{3}$
$Z=4$
$D_{x}=1.625 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4734
reflections
$\theta=1.0-27.9^{\circ}$
$\mu=0.64 \mathrm{~mm}^{-1}$
$T=123$ (2) K
Triangle, orange
$0.45 \times 0.30 \times 0.15 \mathrm{~mm}$
Data collection
Nonius KappaCCD diffractometer ω and φ scans
Absorption correction: none
22354 measured reflections
4629 independent reflections
3314 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.081$
$S=1.04$
4629 reflections
314 parameters
All H -atom parameters refined

$$
\begin{aligned}
& R_{\text {int }}=0.058 \\
& \theta_{\max }=27.9^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-13 \rightarrow 13 \\
& l=-36 \rightarrow 36
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0275 P)^{2}\right. \\
& \quad+0.7246 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.28 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{aligned}
$$

$\mathrm{C}-\mathrm{H}$ distances are in the range $0.09(2)-1.00(2) \AA$, and $\mathrm{N}-\mathrm{H}$ distances are 0.86 (2) and 0.87 (2) \AA.

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski \& Minor, 1997) and COLLECT; cell refinement: DENZO; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000) and OLEX (Dolomanov et al., 2003); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting 'Control and Prediction of the Organic Solid State' (www.cposs.org.uk).

References

Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Blake, A. J., Champness, N. R. \& Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.
Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. \& David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

