Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Sarah A. Barnett, a* Andrea Johnston, b Alastair J. Florence and Alan R. Kennedy^c

^aDepartment of Theoretical and Computational Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, ^bDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and ^cDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland

Correspondence e-mail: sarah barnett@ucl.ac.uk

Key indicators

Single-crystal X-ray study $T=123~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.003~\mathrm{\mathring{A}}$ R factor = 0.038 wR factor = 0.080 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3,4-Dichloro-1-nitrobenzene-aniline (2/1)

The solvate structure of 3,4-dichloro-1-nitrobenzene with aniline, $2C_6H_3Cl_2NO_2\cdot C_6H_7N$, is reported. Ribbons of 3,4-dichloronitrobenzene, formed by $Cl\cdot\cdot\cdot Cl$ and $N-O\cdot\cdot\cdot Cl$ interactions, are linked together $via\ N-H\cdot\cdot\cdot O$ hydrogen bonds with aniline into an undulating two-dimensional sheet.

Received 22 June 2005 Accepted 24 June 2005 Online 30 June 2005

Comment

The title compound, (I), was produced during an automated parallel crystallization polymorph screen on 3,4-dichloronitrobenzene (3,4-DCNB). The sample was identified as a novel form using multi-sample X-ray powder diffraction analysis of all recrystallized samples (Florence *et al.*, 2003). Subsequent manual recrystallization from a saturated aniline solution by slow evaporation at 298 K yielded samples suitable for single-crystal X-ray analysis. The title solvate, (I), crystallizes in the space group $P2_1/n$ with two molecules of 3,4-DCNB and one molecule of aniline in the asymmetric unit (Fig. 1).

The crystal structure of (I) is characterized by ribbons of 3,4-DCNB, which are linked by aniline molecules to form a

Figure 1

The asymmetric unit of (I), showing the numbering scheme used.

Displacement ellipsoids are drawn at the 50% probability level.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2
The two-dimensional network formed by (I), showing the intermolecular interactions involved as dashed lines (3,4-DCNB molecule 1: green; 3,4-DCNB molecule 2: blue; aniline: red).

Figure 3
Packing diagram viewed perpendicular to the sheets, illustrating the outof-plane aniline molecules and the stacking arrangement of the sheets.
Intermolecular interactions are shown as dashed lines.

continuous sheet (Fig. 2). Molecules of type 1 (C1–C6) form a zigzag chain via Cl···Cl interactions [Cl1···Cl2ⁱ = 3.399 (1) Å and C3–Cl1···Cl2ⁱ = 149.4 (1)°; symmetry code: (i) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$]. These molecules are then involved in a second contact with molecules of type 2 (C7–Cl2) via N–O···Cl interactions [O2···Cl4ⁱⁱ = 3.056 (2) Å and N1–O2···Cl4ⁱⁱ = 140.1 (1)°; symmetry code: (ii) 1 - x, 1 - y, 1 - z], thus forming 3,4-DCNB ribbons running parallel to the b axis. The aniline solvent molecules, which lie in a perpendicular plane, link these ribbons into an undulating sheet through two N–H···O interactions [N3···O1ⁱⁱⁱ = 2.52 (2) Å and N3–H1N···O1ⁱⁱⁱ = 157 (2)°, and N3···O3ⁱ = 2.64 (2) Å and N3–H2N···O3ⁱ = 147 (2)°; symmetry code: (iii) 2 - x, 1 - y, 1 - z]. These sheets form an interdigitated ABAB stack parallel to the a axis (Fig. 3).

Experimental

A single-crystal sample of the title compound was recrystallized from aniline solution by slow evaporation at $\it ca$ 293 K.

Crystal	data
.rvsiai	aana

$2C_6H_3Cl_2NO_2\cdot C_6H_7N$	$D_x = 1.625 \text{ Mg m}^{-3}$
$M_r = 477.11$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 4734
a = 6.9774 (2) Å	reflections
b = 10.1668 (3) Å	$\theta = 1.0 - 27.9^{\circ}$
c = 27.6762 (7) Å	$\mu = 0.64 \text{ mm}^{-1}$
$\beta = 96.495 \ (2)^{\circ}$	T = 123 (2) K
$V = 1950.69 (9) \text{ Å}^3$	Triangle, orange
Z=4	$0.45 \times 0.30 \times 0.15 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	$R_{\rm int} = 0.058$
ω and φ scans	$\theta_{\rm max} = 27.9^{\circ}$
Absorption correction: none	$h = -9 \rightarrow 9$
22354 measured reflections	$k = -13 \rightarrow 13$
4629 independent reflections	$l = -36 \rightarrow 36$
3314 reflections with $I > 2\sigma(I)$	

Refinement

$w = 1/[\sigma^2(F_0^2) + (0.0275P)^2]$
+ 0.7246P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta \rho_{\text{max}} = 0.28 \text{ e Å}^{-3}$
$\Delta \rho_{\min} = -0.32 \text{ e Å}^{-3}$

C-H distances are in the range 0.09 (2)–1.00 (2) Å, and N-H distances are 0.86 (2) and 0.87 (2) Å.

Data collection: *COLLECT* (Hooft, 1998) and *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; cell refinement: *DENZO*; data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000) and *OLEX* (Dolomanov *et al.*, 2003); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2003).

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting 'Control and Prediction of the Organic Solid State' (www.cposs.org.uk).

References

Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.

Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). *J. Pharm. Sci.* **92**, 1930–1938.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.